Community Resilience and Vulnerability
Virtual Meeting Housekeeping

- Please mute yourself when not speaking
- Raise your real hand to speak, or blue icon in Participant panel
- If on phone, raise hand by *9
- Communicate by opening Chat window (icon at bottom)
- Participant member images can arranged by View icon in upper right corner
- Audio loudness and quality can be adjusted in ‘Audio Settings’ in lower left
Agenda

• Introductions

• Update on ONE BAY

• Presentation on the Extreme Impacts of Heat
 • Randy Deshazo, Director of Planning and Research, TBRPC

• Community Vulnerability Assessments Presentations and Discussion
 • Cara Woods Serra, AICP, CFM Comprehensive Resiliency Planner, TBRPC
 • CJ Reynolds, Director of Resiliency and Engagement, TBRPC
 • Doug Griesenaur, Director, Workforce Development and Financial Stability Initiatives, United Way Suncoast
 • Taryn Sabia, AIA, Director and Research Associate Professor, USF School of Architecture and Community Design
New Role for ONE BAY

• Catalyst for emerging topics of regional interest
• Define needs and new resources
• Collect input on programs and projects
Extreme Impacts of Heat

Randy Deshazo, Director of Planning and Research
The Cost of Doing Nothing: Climate Change and the Tampa Bay Economy
An Update on Heat Mortality
Randy Deshazo, Director of Planning + Research, TBRPC
One Bay Meeting, August 7, 2020
The 6 hottest years (June) in recorded history

2014
2015
2016
2017
2018
2019

Source: NOAA, 2020
A Changing World: Many Impacts Outside Our Scope

- **Drought**
- Political instability along climate fault-lines
 - Prolonged drought in Syria contributed to civil war
 - Millions of refugees
- Changes to global trade balance
 - Shifting factor endowments
 - New trade routes across the Arctic Ocean
 - Decline in US imports
- **Phenological mismatch**
Phenological Mismatch

Pied flycatcher migrates from Africa to Europe to lay eggs, and they hatch just in time to eat moth caterpillars who eat young oak leaves in the first weeks of Spring.

In recent years, oak trees have leafed out earlier, bringing out the caterpillars who disappear before the flycatcher arrives.

Source: Rushing. 2010.
The Cost of Hotter Days: A narrow scope for regional and state impacts

- Global increases in temperatures is likely to:
 - Increase mortality from heat stroke
 - Lower labor productivity in some high-risk industries
 - Increase demand for energy
 - Increase AND decrease farm output
 - Raise sea levels, increase flooding AND drought, saltwater intrusion
Implications

MORTALITY AND MIGRATION
LOWER LABOR FORCE PARTICIPATION, LOWER CONSUMER SPENDING

LABOR PRODUCTIVITY
LOSS OF JOBS, DECLINE IN WAGES AND SHIFT TO AUTOMATION

ENERGY AND INFRASTRUCTURE
INCREASED ELECTRICITY SPENDING, MORE FREQUENT INFRASTRUCTURE REPAIR AND REPLACEMENT

SEA LEVEL RISE AND EXTREME WEATHER
INCREASE IN INSURANCE COSTS. LOWER PROPERTY VALUES, LOSS OF JOBS AND TAX REVENUE

Image Source:
How do these factors impact the regional and state economy?

- Assuming the Business-as-Usual Scenario (RCP 8.5)
- American Climate Prospectus
- Peer reviewed scientific articles
- GIS and local statistical data
Mortality and Migration

Persistent extreme temperatures overwhelm the body’s ability to cool off with perspiration. Heat stress deaths often attributed to cardiovascular/respiratory disease, risks may be underestimated.

Figure 8.1: Temperature impact on mortality

Percentage change in mortality rate (deaths/100,000) vs. daily maximum temperature (°F)

95% Confidence interval
Median
Mortality and Migration

Mortality rate changes will vary by regional climatic conditions and demographic profile.
Projected Number of Days over 95 Degrees, 1981-2059

Source: Climate Impact Lab, 2020
Calculating Impacts

- Estimate mortality rate by age cohort per median extreme temperature days per year, 2020-2060 (benchmarked against Climate Prospectus estimates)
 - Florida has a fast-growing population and one of the oldest and most vulnerable populations in the US.
- Subtract deaths by age cohort from an underlying “control” population forecast that is synced with economic variables (labor force, employment, consumer spending) in REMI PI+.
- Yields differences from the control forecast (-100 means 100 fewer residents because of heat-related deaths) because of mortality and out-migration due to loss of jobs or loss of opportunity.
Heat Mortality Annual Impacts

Climate Prospectus mortality rates per 100,000 by age cohort by year entered into REMI PI+ demographic model

<table>
<thead>
<tr>
<th></th>
<th>Tampa Bay Area</th>
<th>Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2020-2029</td>
<td>2030-2039</td>
</tr>
<tr>
<td>Mid-Decade Population Estimate</td>
<td>4.1 million</td>
<td>4.7 million</td>
</tr>
<tr>
<td>Population Change: Deaths per year</td>
<td>-191</td>
<td>-290</td>
</tr>
<tr>
<td>Population Change: Births per year</td>
<td>-7</td>
<td>-30</td>
</tr>
<tr>
<td>Total (+Out-Migration) per year</td>
<td>-266</td>
<td>-607</td>
</tr>
</tbody>
</table>
Heat Mortality Economic Impacts

Increased deaths, loss of spending and amenity effects reduce labor force participation and jobs, reducing economic output as calculated in REMI PI+.

<table>
<thead>
<tr>
<th>Tampa Bay Area (Annual Average Δ)</th>
<th>2020-2029</th>
<th>2030-2039</th>
<th>2040-2049</th>
<th>2050-2059</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment</td>
<td>-266</td>
<td>-607</td>
<td>-1,015</td>
<td>-1,708</td>
</tr>
<tr>
<td>Labor Force</td>
<td>-274</td>
<td>-795</td>
<td>-1,425</td>
<td>-2,546</td>
</tr>
<tr>
<td>Gross Regional Product (Millions $2018)</td>
<td>-$25.4</td>
<td>-$64.6</td>
<td>-$120.8</td>
<td>-$228.2</td>
</tr>
<tr>
<td>Personal Income (Millions $2018)</td>
<td>-$34.9</td>
<td>-$106.4</td>
<td>-$215.5</td>
<td>-$425.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Florida (Annual Average Δ)</th>
<th>2020-2029</th>
<th>2030-2039</th>
<th>2040-2049</th>
<th>2050-2059</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment</td>
<td>-1,564</td>
<td>-3,476</td>
<td>-5,532</td>
<td>-8,739</td>
</tr>
<tr>
<td>Labor Force</td>
<td>-1,579</td>
<td>-4,428</td>
<td>-7,552</td>
<td>-12,689</td>
</tr>
<tr>
<td>Gross State Product (Millions $2018)</td>
<td>-$145.5</td>
<td>-$359.5</td>
<td>-$638.3</td>
<td>-$1,130.6</td>
</tr>
<tr>
<td>Personal Income (Millions $2018)</td>
<td>-$207.1</td>
<td>-$614.3</td>
<td>-$1,183.8</td>
<td>-$2,178.9</td>
</tr>
</tbody>
</table>
Next Steps

• Farm Output
• Labor Productivity by Industry Group
• Energy Expenditures by industry and residential uses

• Infrastructure Costs (more frequent maintenance, drowned outfalls)
• Property Value impacts (outright loss, diminished value, differential appreciation through climate gentrification)
• Fiscal bottom line (lower revenues, higher costs, lower bond yields)
Thank You!

randy@tbrpc.org
<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal/Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Rushing.</td>
<td>The effects of phenological mismatches on demography.</td>
<td>Phil. Trans. R. Soc. B 365, 3177–3186</td>
</tr>
</tbody>
</table>
Global Increase in Temperature Impact on Tampa Bay & Florida Economy Flowchart

American Climate Prospectus Alternative Control Forecast (RCP 8.5)

- Increase in Temperature
 - Sea Level Rise
 - Extreme Weather

Tampa Bay Land Use Impacts
- Inundation, shoreline recession & storm surge
- Saltwater intrusion & subsidence
- Wind damage & heat

Florida and Tampa Bay Economy
- GRP
- Jobs
- Personal Income
- Population

Florida Intergovernmental Transfers

World/US Economy
- US Trade Balance

Tampa Bay Net Fiscal Impacts
- Tampa Bay Land Use Impacts
- Infrastructure Maintenance costs

Agricultural productivity
- Energy expenditures

Labor productivity
- Mortality

Tourism
- Sales Tax
- Amenity Value
- Capital Stock
- Taxable Property Value
- Tourism
- Crime

Amenity Value

Infrastructure Maintenance costs

Tourism
- Sales Tax
- Amenity Value
- Capital Stock
- Taxable Property Value
- Tourism
- Crime

Amenity Value

Amenity Value

Amenity Value

Amenity Value

Amenity Value

Amenity Value
Poll Questions
What is a Vulnerability?

- FEMA defines vulnerability as “a measure of the degree in which a jurisdiction, structure, service, or geological area is susceptible to physical injury, harm, damage, or economic loss by the impacts of a particular hazard event or disaster.”

Image source: https://futurism.com/videos/the-flood-predicting-ai-that-will-save-lives
What is a Vulnerability? (Cont.)

- Vulnerability is defined as susceptibility of human settlements to the harmful impacts of natural hazards. This susceptibility has implications at the individual, household and community levels and potentially harmful outcomes such as injuries, deaths, damage to housing and infrastructure, and destruction of businesses and livelihoods.

- It is therefore important to capture both the physical/exposure and social/human dimensions. (1)

Physical Vulnerability Assessments (FEMA Reqs)

A mitigation plan should describe vulnerability in terms of:

- types and numbers of existing and future buildings, infrastructure, and critical facilities located in the identified hazard areas;
- estimate of the potential dollar losses to vulnerable structures;
- provide general description of land uses and development trends within the community so mitigation options can be considered in future land use decisions.
What is a Community Vulnerability Assessment?

- Hazards
- Population
- Place
- Structural
- Governance
Poll Questions
RESILIENCE and ENERGY ANALYSIS OF COMMUNITIES and HOUSING IN THE TAMPA BAY REGION

Funded by a Grant from the JP Morgan Chase Foundation
REACH OBJECTIVES

• Develop consistent frameworks, methods and metrics to evaluate community vulnerability and affordable housing risks;

• Create standardized approach for mapping housing inundation and risks; produce new maps and data.

• Define approaches to assess energy consumption and opportunities.

• Provide training and technical assistance to support updates to local plans, policies.

• Support/inform the Regional Action Plan – create a regional road map that integrates resilient affordable housing and communities.
REACH Core Components

1. Community Vulnerability Assessment
2. UF Housing and Flood Risk Tool
3. Policy-Planning Analysis and Crosswalk
Goals: Regionalize and use the UF Mapping Tool; create User Guide; Deploy https://arcg.is/00uiS1

Affordable Housing + Coastal Flood Hazards Web Application

Where is “naturally occurring affordable housing” (NOAH) exposed to coastal flooding?

Who lives in affordable housing exposed to coastal flooding?

<table>
<thead>
<tr>
<th>Primary Funding Source</th>
<th>Total Units</th>
<th>% Units At Risk</th>
<th>% Units Not At Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHFC</td>
<td>26,386</td>
<td>60%</td>
<td>40%</td>
</tr>
<tr>
<td>HUD</td>
<td>8,557</td>
<td>57%</td>
<td>43%</td>
</tr>
<tr>
<td>LFHA</td>
<td>2,053</td>
<td>74%</td>
<td>26%</td>
</tr>
<tr>
<td>Public Housing</td>
<td>4,812</td>
<td>51%</td>
<td>49%</td>
</tr>
<tr>
<td>RD</td>
<td>2,215</td>
<td>39%</td>
<td>61%</td>
</tr>
<tr>
<td>Total</td>
<td>44,023</td>
<td>58%</td>
<td>42%</td>
</tr>
</tbody>
</table>

Which public funding programs are exposed to coastal flooding?
FHC REACH EFFORTS

- Policy Crosswalk to self-assess plans for housing, flood risk, disaster resilience, and mitigation policies.
- Model language for mitigation and resilience strategy and HUD Consolidated Plan.
- 1:1 meetings with Local Governments.
- Training webinars, resources.
Defining Community Vulnerability Metrics

• ALICE Overview
• Background on the draft CVA
• Go into Break out groups
• Come back together

• Goal – get a small group to workshop the CVA and input over the next 2 months...
Community Vulnerability and Understanding ALICE*

(*struggling Floridians that are Asset Limited, Income Constrained, Employed)

Doug Griesenaur
Director, Workforce Development and Financial Stability Initiatives
<table>
<thead>
<tr>
<th></th>
<th>Single Adult</th>
<th>Two Adults</th>
<th>Two Adults Two School-Age Children</th>
<th>Two Adults, Two in Child Care</th>
<th>Single Senior</th>
<th>Two Seniors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing</td>
<td>$691</td>
<td>$765</td>
<td>$939</td>
<td>$939</td>
<td>$691</td>
<td>$765</td>
</tr>
<tr>
<td>Child Care</td>
<td>$0</td>
<td>$0</td>
<td>$409</td>
<td>$1,162</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Food</td>
<td>$289</td>
<td>$600</td>
<td>$1,001</td>
<td>$874</td>
<td>$246</td>
<td>$511</td>
</tr>
<tr>
<td>Transportation</td>
<td>$375</td>
<td>$546</td>
<td>$843</td>
<td>$843</td>
<td>$329</td>
<td>$455</td>
</tr>
<tr>
<td>Health Care</td>
<td>$200</td>
<td>$507</td>
<td>$803</td>
<td>$803</td>
<td>$497</td>
<td>$993</td>
</tr>
<tr>
<td>Technology</td>
<td>$55</td>
<td>$75</td>
<td>$75</td>
<td>$75</td>
<td>$55</td>
<td>$75</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$186</td>
<td>$287</td>
<td>$448</td>
<td>$527</td>
<td>$207</td>
<td>$318</td>
</tr>
<tr>
<td>Taxes</td>
<td>$254</td>
<td>$380</td>
<td>$408</td>
<td>$570</td>
<td>$254</td>
<td>$380</td>
</tr>
<tr>
<td>Monthly Total</td>
<td>$2,050</td>
<td>$3,160</td>
<td>$4,926</td>
<td>$5,793</td>
<td>$2,279</td>
<td>$3,497</td>
</tr>
<tr>
<td>Annual Total</td>
<td>$24,600</td>
<td>$37,920</td>
<td>$59,112</td>
<td>$69,516</td>
<td>$27,348</td>
<td>$41,964</td>
</tr>
<tr>
<td>Hourly Wage</td>
<td>$12.30</td>
<td>$18.96</td>
<td>$29.56</td>
<td>$34.76</td>
<td>$13.67</td>
<td>$20.98</td>
</tr>
</tbody>
</table>
Questions?
Developing the Community Vulnerability Assessment

Taryn Sabia, Director,
USF Florida Center for Community Design and Research
Community Vulnerability Assessment

Indicators of Resiliency

Three Main Categories
1. Social Vulnerabilities
2. Structural Vulnerabilities
3. Place Vulnerabilities
Community Vulnerability Assessment

Indicators of Resiliency

Populations and Social Vulnerability
- Household Composition
- Race/Ethnicity/Language
- Transportation Disadvantaged
- Neighborhood Stability
- Affordable Housing Demand
- And more...

<table>
<thead>
<tr>
<th>Categories</th>
<th>Sub-Categories</th>
<th>Description (Technical Classifications)</th>
<th>Why Use This Layer? (consider user, purpose, precedent)</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household Composition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Race/Ethnicity/Language</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation Disadvantaged</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighborhood Stability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affordable Housing Demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>And more...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Community Vulnerability Assessment

Indicators of Resiliency

Structural Vulnerability
- Repetitive Loss Properties
- Building Elevation
- Types of Structures
- Age of Structures
- Housing Quality
- Infrastructure
- And more...

<table>
<thead>
<tr>
<th>Categories</th>
<th>Sub-Categories</th>
<th>Description (Technical Classifications)</th>
<th>Why Use This Layer? (consider user, purpose, precedent)</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive Loss Properties</td>
<td></td>
<td>Location specific data indicating (how many) historic insurance claims</td>
<td>Many comprehensive plans and hazard mitigation plans discuss purchasing or mitigation of repetitive loss properties.</td>
<td>County data sources. This layer is typically difficult to obtain.</td>
</tr>
<tr>
<td>Building Elevation</td>
<td>From elevation certificate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age of Structure</td>
<td>2002</td>
<td>Start of Florida Building Code (After Hurricane Andrew)</td>
<td>D.O.R. Parcel Data</td>
<td></td>
</tr>
<tr>
<td>Type of Structure</td>
<td>Mobile Home</td>
<td></td>
<td>D.O.R. Parcel Data</td>
<td></td>
</tr>
<tr>
<td>Age of Structure</td>
<td>Single Family: Woodframed</td>
<td></td>
<td>D.O.R. Parcel Data</td>
<td></td>
</tr>
<tr>
<td>Age of Structure</td>
<td>Single Family: Concrete/CMU</td>
<td></td>
<td>D.O.R. Parcel Data</td>
<td></td>
</tr>
<tr>
<td>Age of Structure</td>
<td>Multifamily: Woodframed</td>
<td></td>
<td>D.O.R. Parcel Data</td>
<td></td>
</tr>
<tr>
<td>Age of Structure</td>
<td>Multifamily: Concrete/CMU</td>
<td></td>
<td>D.O.R. Parcel Data</td>
<td></td>
</tr>
<tr>
<td>Housing Quality</td>
<td>The current occupant has reported three or more maintenance deficiencies</td>
<td></td>
<td>D.O.R. Parcel Data</td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Sewer or Septic</td>
<td></td>
<td>D.O.R. Parcel Data</td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Water Quality</td>
<td></td>
<td>D.O.R. Parcel Data</td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Water Treatment Facilities: Location, Age, Condition, Capacity</td>
<td></td>
<td>D.O.R. Parcel Data</td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Power Supply / Grid Backup</td>
<td></td>
<td>D.O.R. Parcel Data</td>
<td></td>
</tr>
</tbody>
</table>
Community Vulnerability Assessment

Indicators of Resiliency

Place Vulnerability
- Physical Location
- Access to Evacuation
- Evacuation Level of Service
- Access to Healthy Food
- Beaches, Dunes, and Barrier Islands
- Distributed Open Spaces
- And more...

<table>
<thead>
<tr>
<th>Categories</th>
<th>Sub-Categories</th>
<th>Description (Technical Classifications)</th>
<th>Why Use This Layer? (consider user, purpose, precedent)</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Isolation</td>
<td>Density per square mile?</td>
<td>Ratio of shelters to population in evacuation zones?</td>
<td>(consider user, purpose, precedent)</td>
<td></td>
</tr>
<tr>
<td>Access to Disaster/Evacuation Shelters</td>
<td>Single bridge access to an area</td>
<td>(What within range?)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Community Vulnerability Assessment

Establish Baselines to understand current conditions in a future context

Planning Horizon: 2045

Hazard Scenario: Sea Level Rise and Flood Risk, Air Quality, Heat, Sink Holes, etc.
Community Vulnerability Assessment

Establish Baselines

Example:
Hillsborough County 2045
Flood Scenario
Community Vulnerability Assessment

Establish Baselines: putting people first

<table>
<thead>
<tr>
<th>Baseline Assessment Activity</th>
<th>Integrated Data Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define Community Population(s) at Risk to Hazard (s) (get a sense of the social vulnerabilities)</td>
<td>Define who is at risk for specific hazards and where they live</td>
</tr>
<tr>
<td></td>
<td>1. Concentrations of segments of vulnerable population (ex: CDC SVI by segment) + hazard</td>
</tr>
<tr>
<td></td>
<td>a. household income</td>
</tr>
<tr>
<td></td>
<td>b. disability</td>
</tr>
<tr>
<td></td>
<td>c. age</td>
</tr>
<tr>
<td></td>
<td>d. minority groups</td>
</tr>
<tr>
<td></td>
<td>other</td>
</tr>
<tr>
<td>Define Economic and Jobs Vulnerability</td>
<td>Define risks to businesses and jobs for specific hazards</td>
</tr>
<tr>
<td></td>
<td>1. NAICS categories (size, type, ownership) + Flood Zones</td>
</tr>
<tr>
<td></td>
<td>2. ALICE database of employment categories (risks to low and moderate income)</td>
</tr>
</tbody>
</table>
Community Vulnerability Assessment

Integrated Data Sets
Adaptation Strategies

MITIGATION

Improve resiliency by improving existing housing

1. Concentrations of Vulnerable Populations + Transportation Disadvantaged + Flood Zone
2. Vehicle Access + Transit Access (Commuter Time) + Building Elevation + Flood Zone
3. Household Income + Year Built Structure + Non-Evacuation Zone
Community Vulnerability Assessment

Integrated Data Sets

Adaptation Strategies

REDEVELOPMENT

<table>
<thead>
<tr>
<th>Improve resiliency by replacing existing housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Housing type (mobile homes, for example) + Rent to Income Ratio (ALICE) + Non-Evacuation Zone</td>
</tr>
<tr>
<td>2. Housing Condition (Inspected, insurance reduction, insured status) + Ownership + Household Income + Non-Evacuation Zone</td>
</tr>
<tr>
<td>3. Multifamily + Year Built + Non-Evacuation Zone</td>
</tr>
</tbody>
</table>
Community Vulnerability Assessment

Integrated Data Sets
Adaptation Strategies

NEW DEVELOPMENT

<table>
<thead>
<tr>
<th>Locate new housing in more resilient context</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Property Value + Transportation Cost (VMT or length of transit time) + Non-Evacuation Zone</td>
</tr>
<tr>
<td>2. Density of Services (schools, fresh food, health) + Level of Service</td>
</tr>
<tr>
<td>3. Hazardous Sites + Flood Zone + Road Network/Connectivity</td>
</tr>
</tbody>
</table>
Discussion Question 1: How has your organization considered community vulnerability?

Discussion Question 2: Which ALICE categories or socioeconomic factors are most important or most challenging for your community?

Discussion Question 3: What opportunities might there be for flood prone areas? What opportunities are there for areas that are socially vulnerable? What would you prioritize?

Discussion Question 4: What barriers does your organization face in conducting a CVA? What resources would allow your organization to successfully conduct a CVA?

Please use Google Form for notes: https://forms.gle/rs1QGPwnDUVECJgG9
Discussion Question 7: What resources have you used to conduct a CVA? What would you recommend to staff beginning the CVA process?

Discussion Question 8: What barriers does your organization face in conducting a CVA? What resources would allow your organization to successfully conduct a CVA?